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Abstract: The use of various statistical factors in absolute rate theory (ART) is examined and criticized. It is concluded that of 
the various procedures proposed for incorporating statistical factors into ART rate constant expressions, only the conventional 
one employing a symmetry number ratio is consistent with the classical formulation of ART. A generalization of this latter fac
tor to include the effects of chirality is also given. Finally, the use of statistical factors in other statistical rate theories is exam
ined. 

Among reaction rate theories those based on a statistical 
approach have enjoyed widespread use over the years, in large 
part because of the enormous popularity of absolute rate 
theory1 (ART). Other important statistical theories contrib
uting to this use include RRKM,2 phase space,3 and collision4 

theories. In the descriptions of rate constants given by these 
theories it has been found necessary to use statistical factors 
to correct for inadequacies in the basic theory. In their original 
formulation,' as part of ART, such factors took the form of a 
ratio of the product of symmetry numbers of the reactants to 
that of the activated complex. These symmetry numbers arose 
naturally from the use of classical rotational partition functions 
in the derivations and were viewed as purely quantum me
chanical correction factors. However, the contemporary view 
of statistical factors in ART and related theories includes a 
correction that accounts for the presence of multiple reaction 
pathways.5 Schlag,6 for example, has advocated replacing the 
conventional symmetry number ratio by a "reaction path de
generacy factor", «, derived from an elegant group-theoretical 
treatment of reaction pathways. To simplify the computation 
Schlag and Haller7 have described a modified direct-count 
method, not involving group theory, for determining the value 
of n. A variant of this method, described by Bishop and Laidler, 
uses the notation /* for n and describes it simply as a "statis
tical factor". In addition, these workers defined a "statistical 
factor", r*, for the reverse process of an activated complex 
returning to reactants. To further complicate matters, other 
statistical factors designated L* and acri have been proposed 
by Elliott and Frey9 and Johnston,10 respectively. These latter 
factors appear to be identical with both /* and n. 

In a study predating the development of this contemporary 
view of statistical factors, Rapp and Weston" concluded, from 
an application of ART to some elementary exchange reactions, 
that the usual symmetry number ratio is an inadequate sta
tistical factor in certain cases. They went on to describe a basis 
for modifying the symmetry number ratio which yielded sta
tistical factors comparable to those obtained using the di
rect-count methods. 

A further extension of the original concept of a statistical 
factor came from examining corrections arising from the ef
fects of chirality. Gold,12 in extending an earlier treatment,13 

suggested the use of symmetry numbers equal to 1Jj for species 
which exist as unresolved mixtures of enantiomers. The reac
tion path degeneracy factor introduced by Schlag implicitly 
accounts for such effects. Marcus14 has extended this treat
ment somewhat by distinguishing between optically isomeric 
pathways and optically isomeric activated complexes. 

While an undesirable proliferation of redundant statistical 
factors has occurred, more importantly, an evaluation of the 
use of statistical factors in rate theories has never been made. 
In the following, we describe such an evaluation. 

Rapp-Weston Statistical Factors 
One of the earliest attempts to revise the use of the con

ventional symmetry number ratio in ART came from a study 
by Rapp and Weston.1 ' They applied ART to a series of ele
mentary exchange reactions of hydrogen and deuterium and 
concluded that the corresponding statistical factors were, in 
certain cases, incorrect. They claimed that the errors arose 
from the failure of ART to properly account for a particular 
difference between the partition function of an activated 
complex and that of a "normal" molecule. The difference that 
they noted lies in the restriction placed on the integration limits 
(0 to °°) of the momentum along the reaction coordinate of the 
activated complex. They pointed out that this restriction often 
results in a nonequivalency of certain atoms of an activated 
complex which would otherwise be equivalent in a normal 
molecule. For example, one may compare the asymmetry of 
the terminal atoms in [H- -H- -H]*, as formed from H- + H2, 
in terms of their momentum components along the bond axis 
relative to the same momentum component of the central atom. 
This effective lowering of the symmetry of an activated com
plex was postulated to lead to a parallel lowering of the sym
metry number used in calculating the partition function. This 
changes the statistical factor since ART employs only "nor
mal" symmetry numbers. 

While, in a certain sense, the symmetry of an activated 
complex may be affected by limiting the value of a momentum 
coordinate, it does not follow that such an effect changes the 
statistical factor for the reaction. Consider, for example the 
partition function, Q*, of the activated complex for the simple 
hydrogen exchange reaction, [H- -H- -H]*, as given in the 
classical approximation15 by 

2 N * - ^ X . • • • X e-H*ikT*p^ • • • AP^ 
<*> < Pi.qi < °° 

where H* is the total Hamiltonian of the activated complex 
and CT̂  is its symmetry number. If we assume, for the moment, 
that there are no limit restrictions on any of the coordinates, 
then the required symmetry number, 0*, equals 2. Introduction 
of limit restrictions on qT, the reaction coordinate (qr = qo to 
qo + S where qo is a value of qr near the saddle point), and on 
pT, the conjugate momentum coordinate (pT = 0 to pv = «>) 
yields the appropriate partition function for an activated 
complex moving toward products. These restrictions do not, 
however, lead to a change in the required symmetry number. 
With these limits the integral in eq 1 still counts the two rota
tional isomers, say [H1- - -H2- - - H 3 ] * and [H3 H2- - -
-H1]*, as belonging to separate phase space volumes. This may 

be seen by associating p r with the normal antisymmetric 
stretching mode. 

(H1) (H2) (H3) 

+Pr > < >• 

- P r •< >—t 
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The arrows in these diagrams may be viewed as representing 
the momentum components along the bond axis. For positive 
values of pr both H1 and H3 will always have equal, positive 
values for their respective momentum components. Also, for 
any given elemental phase space volume surrounding a positive 
value of pT there exists an equal volume corresponding to the 
species where the positional coordinate values of H1 and H3 

have been interchanged. Since the two corresponding species 
are physically identical, the usual symmetry number correction 
(c* = 2) must still be made instead of using the value of unity 
as suggested by Rapp and Weston. Finally, we may conclude 
that the introduction of the limit restrictions, while affecting 
the value of the integral, does so without changing the value 
of the statistical factor. These conclusions may be generalized 
to include any activated complex and hence lead directly to the 
rejection of the use of Rapp-Weston statistical factors in 
ART. 

It is of interest to note that Rapp and Weston's original 
motivation for their treatment of statistical factors came from 
the "untenable conclusion" that certain exchange reactions, 
such as those given in eq 2 and 3, must have different statistical 
factors ". . . at the classical limit of high temperatures where 
all quantum effects have vanished . . .". 

H + D'-D2 — [H- -D1- -D2]* — H-D1 + D2 (2) 

H1 + H2-H3 -* [H1- -H2- -H3]* — H'-H2 + H3 (3) 

The ART statistical factors for eq 2 and 3 are 2 and 1, re
spectively. Their premise that "all quantum effects have van
ished" is obviously incorrect since the quantum mechanically 
determined wave function symmetry properties appear at all 
temperatures and underlie the difference shown between the 
two statistical factors given here. Specifically, the antisym
metry of the total wave function of the activated complex of 
eq 3 requires that a statistical factor be included to account for 
the prohibition of rotational functions possessing symmetry 
properties incompatible with this total wave function. Naive 
"collisional" arguments that equate a statistical factor with 
the number of ways that an activated complex might be formed 
also do not take into account these essential symmetry prop
erties. 

Reaction Path Degeneracy Factors 
In the calculation of ART rate constants a simple reaction 

path based procedure, whereby the symmetry numbers are 
equated to unity and the rate constant expression is simply 
multiplied by the number of ways reaction may occur (i.e., 
reaction pathways), gives, in many cases, the same results as 
the conventional one using symmetry numbers. As pointed out 
by Schlag,6 this fact led many early workers to assume their 
complete equivalence. However, it was apparently the pre
viously discussed study of Rapp and Weston1' that first implied 
a preference for a reaction path based procedure. This notion 
resulted from their derivation of a new method of determining 
statistical factors that gave apparent agreement with those 
calculated using a direct-count method. 

In a follow-up to this study, Schlag6 gave his elegant deri
vation of the reaction path degeneracy factor and showed its 
use as a statistical factor in a reaction path based treatment 
of ART rate constants. This factor, n, was given as 

n = kg/h (4) 

where g and h are the orders of point groups associated with 
reactants and activated complex, respectively. The quantity 
k is the number of permutations of identical atoms in reactants, 
resulting from a hypothetical equilibrium between activated 
complexes and reactants, which are not also equivalent to a 
symmetry operation contained in the point group associated 
with g. Concerning the use of n in ART, Schlag did not attempt 

to prove the validity of a reaction path based procedure, ap
parently feeling that its validity followed from the work of 
Rapp and Weston. However, Bishop and Laidler8a did attempt 
to justify this procedure using an elementary argument that 
bears examining. 

These workers considered a general, bimolecular reaction 

A + B ^ X * ^ C + D (5) 

in which the activated complex, X*, formed from A and B was 
hypothetically prevented from passing into products. This 
means that X* is in equilibrium with A and B. The assumption 
was then made that the rate of return, RT, of the activated 
complex, X*, to reactants is given by 

Rr = r*v[X*] (6) 

where v is the ordinary frequency of crossing the reaction po
tential barrier and r* is the reaction path degeneracy factor 
associated with X* returning to products. A Maxwell-
Boltzmann distribution for X+ yields 

[X*]- [A][B] ( j M 
Z A Z 1 B 

-E(,/kT (7) 

where the fs are the system partition functions, including 
symmetry numbers. Extraction of a vibrational factor from 
f*, evaluated16 at small values of the associated frequency, 
gives 

P T •*'"« (£)(&) -EaIkT (8) 

They then applied a theorem8'17 (cf. Appendix) relating the 
forward and reverse reaction path degeneracy factors, /* and 
r*, respectively, to the symmetry numbers of A, B, and X*. 

/ * - ffA*B ( 9 ) 

ax* 
Use of this theorem leads to the expression 

•^™0(S)(i> -EaIkT (10) 

where the f°'s are the partition functions from which the 
symmetry numbers have been omitted. Substitution of eq 10 
into eq 6 yields 

( i t ) 

Since the system is at equilibrium, eq 11 also gives the rate with 
which the reactions enter the activated state. Replacing the 
barrier restriction by the hypothesis18 that all activated com
plexes become products results in RT becoming the rate asso
ciated with product formation, in accordance with the reaction 
path based procedure discussed previously. 

While appearing straightforward, this argument is flawed 
by the initial assumption that RT is given by eq 6. The correct 
expression should be 

Rr = v[X*] (12) 

To understand this requires a brief examination of the prop
erties of sm activated complex. Within the quadratic approx
imation, the barrier-crossing frequency, v, may be identified 
with a vibrational normal mode corresponding to the reaction 
coordinate. Since the force constant matrix of an activated 
complex must possess only one negative eigenvalue,19 this ei
genvalue must be associated with v. It follows that an activated 
complex may possess only one normal mode of decomposition. 
This implies that the rate of decomposition to reactants of an 
activated complex is determined solely by v; if the factor for 
[X*] were r*v instead of v then there would exist r* indepen
dent decomposition modes corresponding to /•* additional 
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normal modes. In the case where r* > 1 the structure would 
no longer be an activated complex.20 

Use of eq 12 in Bishop and Laidler's argument leads to a 
modification of eq 11 in which /* is replaced by /*/>*. This 
modified rate constant expression is equivalent to the con
ventional ART expression since this latter ratio is equivalent 
to the conventional symmetry number ratio (cf. eq 9). In ad
dition to vindicating the original symmetry number treatment 
this modified argument also shows the proper use of reaction 
path degeneracy factors in ART rate constant calculations. 

The use of reaction path degeneracy factors in the analysis 
of reaction pathways has occasionally led to difficulties. For 
example, a recent study22 discussing the use of statistical 
factors in reaction systems containing "valley bifurcations" 23 

on the associated potential energy surfaces concluded that the 
relative merits of using single reaction path degeneracy factors 
vs. symmetry number ratios depended upon the detailed ki
nematics near these bifurcations. However, since ART is not 
concerned with species intermediate (e.g., at a bifurcation) 
between reactant and activated complex it follows that the 
kinematics associated with such a species are irrelevant to 
choosing a statistical factor. Had these workers realized this, 
their remaining arguments would have led them to reject their 
use of reaction path degeneracy factors in describing these 
reactions. 

It has been tacitly assumed by some workers6-11 that the 
reaction path degeneracy factors and the Rapp-Weston factors 
are equivalent. That this is not a correct assumption may be 
shown most directly by a simple example that demonstrates 
the contrary. Consider the proton exchange reaction given in 
eq 13. A hypothetical activated complex of Civ symmetry is 

1H+ -I- 2H—3H 2H+ 4- 1H—3H (13) 

postulated. While it is symmetry allowed,21 its reasonableness 
is irrelevant to the following considerations. A trivial calcu
lation shows the symmetry number ratio, a^a-^jc^, to equal 
unity. The reaction path degeneracy factor /*, calculated by 
Laidler's procedure, is equal to 3. Finally, owing to the in
equivalence of atoms 2 and 3 along the reaction coordinate, the 
symmetry number of the activated complex, by Rapp and 
Weston's reasoning, must be reduced to unity resulting in a 
modified symmetry number ratio of 2. Thus, all three statistical 
factors are different! 

Effects of Chirality on Statistical Factors 
Since the partition function of a chiral species represents that 

of only one enantiomer, in reactions involving unresolved 
mixtures of enantiomers a corrected ART rate constant ex
pression is often needed to account for the presence of the other 
enantiomer. Thus, Gold12 suggested assigning a symmetry 
number equal to V2 to any species, which is also an unresolved 
mixture of enantiomers, involved in a reaction. This, in effect, 
doubles the value of the corresponding partition function thus 
accounting for both enantiomers. For reactions involving di-
astereomeric species only one of these should be counted since 
the others are best viewed as belonging to separate reaction 
systems. 

Gold's ad hoc procedure of accounting for enantiomeric 
species in reactions may be generalized to include all species 
if the symmetry number of a species is simply replaced by the 
factor h/2, where h is the order of the point group of the 
species. Thus, in the case of achiral species, this factor reduces 
to the symmetry number,7 a, since the order of the point group 
is 2c The only exceptions occur for the cases of linear mole
cules possessing £>„;, or C&v symmetry, where the symmetry 

numbers are 2 and 1, respectively. Similarly, for chiral species 
this factor reduces to a/2 since the order of the corresponding 
point group is a owing to the absence of improper rotation axes 
in point groups of chiral systems. Thus, Gold's factor of V2 is 
automatically included here for all chiral species with sym
metry numbers of unity. In addition, this procedure accounts 
for chiral species possessing symmetry numbers greater than 
unity. This generalization also applies to statistical factors in 
equilibrium constant expressions. 

Statistical Factors in Other Rate Theories 

Most work on statistical factors has concentrated on ap
plications to ART. We now give an outline of extensions of this 
work to other important statistical theories. 

A. RRKM Theory.2 Since RRKM theory is based on ART 
the same considerations apply. Hence, the appropriate statis
tical factor, S, is given by 

S = hR/h^ (14) 

where AR and hx* refer to the group orders of reactant (R) and 
activated complex (X*), respectively. In the usual case where 
only achiral species are involved this ratio of group orders re
duces to the familiar ratio of the corresponding symmetry 
numbers. This same reduction also applies to reaction involving 
only unresolved chiral species. 

To account for chirality effects Marcus14 suggested multi
plying RRKM rate constant expressions by the factor a, de
fined as "the number of optically isomeric reaction paths". 
Paths were chosen instead of activated complexes to account 
for the situation where two optically isomeric paths intersect 
in configuration space at a single achiral activated complex. 
However, within the quadratic approximation,20 an activated 
complex cannot exist at the intersection of two independent 
reaction paths with still a third path leading to products. Thus, 
one should alter the definition for such systems of a to read 
"number of optically isomeric activated complexes" in keeping 
with an earlier definition given by Marcus.14b Explicit inclusion 
of a in rate constant expressions is not necessary since it is al
ready included in eq 14. 

B. Collision Theory. The possibility of using a single reaction 
path degeneracy factor as a statistical factor occurs in this 
theory. This theory is discussed here mainly to demonstrate 
this possibility. Eliason and Hirschfelder,4a in their general 
collisional treatment of bimolecular reactions, derived the 
following rate constant expression for a reaction between a and 
b, 

k - i2lkT^'/2 y Y el-l^+^A/kT] 

C" CiJ
mn(E)Ee-^kTdE (15) 

where Qa
m and Qb

m are the respective internal partition 
functions of a and b, eai and ty are the respective /th and_/th 
energy states of a and b, and C,ym" is the reaction cross section 
at initial relative kinetic energy E for reactant states / and j 
going to product states m and n. An obvious statistical factor 
is obtained by extracting the symmetry numbers of a and b 
from the partition functions Qa'

ni and Qb[nt. It also seems 
reasonable to associate a statistical factor with C,y m" if there 
exists an equivalency among the various orientations of a and 
b that lead to the same products. Assuming that identical 
atoms in a and b are labeled, we may define Sijmn, the specific 
reaction cross section, to be the reaction cross section associated 
with the range of relative orientations of a and b that lead to 
the same labeled product(s). From one of these relative ori
entations of a and b there may be obtained / equivalent ones, 
by symmetric rotations of a and/or b, that each lead to dif
ferent labeled product(s). If these / orientations represent all 
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possible orientation ranges for a given reaction between a and 
b then 

lSijmn = Cijmn (16) 

The factor / is defined here to be identical with the factor 
/ described by Bishop and Laidler8 as being the number of 
differently labeled sets of given products that can be formed 
if all identical atoms in reactants are labeled. Factoring of both 
the partition functions and the reaction cross section in eq 15 
leads to an overall statistical factor, Sc, given by 

For the usual case of achiral reactants, this expression reduces 
to a simple product of / and the corresponding symmetry 
numbers. 

The specific reaction cross section, Sijmn, should prove to 
be a more meaningful quantity than C,ym" in discussing rela
tive reactivities since statistical factors are essentially absent 
from the former factor. 

C. Variational Theory. Building on earlier treatments,24 

Keck25 has described a rate theory based on the assumption 
that a reacting system can be described by the motion of a 
representative point in phase space. Division of this phase space 
by a trial "surface" separates reactants from products. The best 
approximation to the true reaction rate is obtained by varying 
this trial surface until a minimum flow through the surface is 
obtained. An equivalent theory, expressed in a different lan
guage, is the so-called phase space theory as formulated by 
Light and co-workers3a and Nikitin.3b 

Keek's classical expression252 for a general rate constant of 
a reaction of order v leading from an initial chemical state i 
to a final state / through a dividing surface S(f,i) in phase 
space is given by 

J* /3n-3 \ 3n-3 

*- £ / * r ( £ W\)dE TI dpjdqj S(JJ) \ 1 I 2 
(18) 

where 
Q1 = Vi-" f e~ElkT "ff dpjdqj (19) 

U £2(0 i 

Qi is the classical partition function per unit volume for a 
system in the state i, corresponding to the phase space volume 
Q(O, and E is the total energy in the center of mass. The 
quantity Jj is the Jacobian of the coordinate transformation 
from (H,S), where H is the system Hamiltonian, to (pj.qj). 

Applying the usual quantum mechanical correction, the 
partition function Qi corresponding to the v reactants is simply 
multiplied by the familiar product of reciprocal symmetry 
numbers, 11" \/o\. The phase space volume element in eq 18 
corresponds to the species on the surface S(JJ) less one degree 
of freedom (in addition to the lack of the three translational 
degrees of freedom). This missing degree of freedom is es
sentially contained in dE since AE = J\dpi dqi/dS. Hence, 
a similar correction applied to this integral yields the reciprocal 
symmetry number I/a* corresponding to the surface species, 
X*. Obviously, the symmetry number cr* is critically dependent 
upon the location of the dividing surface. Depending upon the 
location of this dividing surface, the symmetry number may, 
in general, be best represented as a product of w symmetry 
numbers corresponding to w loosely associated fragments in 
X*. The resulting, overall statistical factor, SD, for achiral 
species is given by 

n a n h, 
S0 = - = '• (20) 

W VV 

l[aj v - w n hj 
i j 

The generalization of this expression to the group order form 
is necessary to account for chirality effects in both reactants 
and surface species. Keck has also shown that eq 18 reduces 
to the ART rate constant expression when the energy of the 
system is separable between the coordinates /?,,<?, and the re
maining coordinates. The surface species is then the activated 
complex and the statistical factor Sv reduces to the ratio of 
symmetry numbers characteristic of ART. 

Conclusions 
From this study we conclude that the recent use of reaction 

path degeneracy factors6"8 and the Rapp-Weston factors11 

in place of the conventional symmetry number ratios in 
ART-based rate expressions is inconsistent with the basic as
sumptions of ART. The conventional symmetry number ratio 
remains as the proper statistical factor to use in ART. How
ever, while the Rapp-Weston factor arose from an incorrect 
derivation within ART, the reaction path degeneracy factor 
stands on its own and may be used as a legitimate statistical 
factor in, for example, collision theory rate expressions. In 
examining the effects of chirality on statistical factors it was 
found that a simple replacement of a symmetry number by the 
factor h/2, where h is the order of the point group associated 
with a species, leads to a general procedure that accounts for 
the chirality of all species in reaction systems. Finally, we have 
extended these conclusions to include the case of statistical 
factors in the related RRKM and variational rate theories. 

Note Added in Proof. E. Pollak and P. Pechuckas (J. Am. 
Chem. Soc, preceding paper in this issue) discuss the question 
of using reaction path degeneracy factors in ART. While their 
approach differs somewhat from ours, they are in agreement 
with our conclusion that such factors should be replaced by 
symmetry number ratios. Only in their treatment of symmetric 
reactions (i.e., those reactions where products are identical with 
reactants) do our conclusions differ. Our position on this matter 
is essentially contained in the discussion surrounding eq 2 and 
3; vide supra. 

Appendix 
The relationship of reaction path degeneracy factors to 

symmetry numbers given by Bishop and Laidler8 (cf. eq 9) may 
also be derived from a graph-theoretical result given by Gordon 
and Temple.17 These workers showed that the product of the 
quotients, nft/nrt, of the forward and reverse reaction path 
degeneracy factors for a series of y steps leading to a given 
molecule from its constituent atoms is proportional to the re
ciprocal symmetry number, \/u, of the molecule: 

The proportionality constant, g, is a statistical factor equal to 
the number of equivalent ways the intermediate graph-like 
particle may be converted into the actual molecular configu
ration. Applying this relationship to a general, unimolecular 
reaction, A —«• T* -* B, yields the equations 

-y-i nn(A) _ 1 X nfi(l*) _ 1 
i= l Mr1-(A) (TA , = 1 « „ ( T T ) <7T* 

where the first y — 1 steps are common to both. Hence, fac
toring the left side of the second of these equations yields the 
identity 

M ^ (3^l "^n *© 
LTVy(A)J /=1 \«ri(A)J I=IKw(T*) 

where nry(A)/nry(A) is simply the quotient of reaction path 
degeneracy factors for the transformation A — [T]*. Using 
these relationships it follows that 
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rify(A) _ ffA 

try (A) (TT* 

as shown earlier by Bishop and Laidler.8 A similar result may 
be derived for bimolecular reactions. 
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Abstract: A vibronic coupling model for mixed valence systems is developed which provides explicit eigenvalues and eigenfunc-
tions based on the formalism previously developed by Fulton and Gouterman to discuss the excited states of symmetrical di-
mers. The mixed valence (intervalence) absorption profile is obtained by calculating transition intensities from populated vi
bronic levels to all higher vibronic levels within the manifold. The parameters of the model are directly related to properties 
of the "monomeric" units. The theory is first applied to the case of two identical and pseudooctahedral constituent units ("mo
nomers") assuming equal force constants in both oxidation states of the monomer. A number of synthetic profiles are presented 
for a range of parameters. The unique Creutz-Taube complex ([(NH3)5Ru-pyr-Ru(NH3)5p+) is singled out for analysis. The 
room temperature absorption spectrum is fit well by a pair of quite closely defined parameters. These parameters indicate that 
the lower potential surface has a small (~57 cm-1) barrier ("valence trapping"). However, the lowest vibronic state is calcu
lated to be about 30 cm -1 above the top of this barrier. Furthermore, the calculated probability distribution in configuration 
space shows complete valence derealization (no trapping) at low temperature, but there is a small hint of trapping at room 
temperature. The model is extended to unsymmetrical mixed valence systems (nonidentical "monomers"). The consequences 
both of including spin-orbit coupling and allowing unequal force constants are examined. 

I. Introduction 

Systems containing ions in two different oxidation states 
often have intense absorption bands which cannot be attributed 
to the absorption of either constituent ion. The classic example 
is Prussian blue, an insoluble crystalline solid containing both 
six-coordinate ferricyanide [Fe(III)-C-N coordination] and 
six-coordinate ferrocyanide (Fe(I I ) -N-C coordination) in a 
regular cubic array.23 Neither of these monomeric species 
alone gives rise to the intense blue color which apparently re
sults from excitations involving both the Fe(II) and Fe(III) 

centers. Such transitions are termed mixed valence or inter
valence transitions.2b'c 

In recent years, a new mixed valence complex, 

[( N H 3 ) 6 R U N Q N R U ( N H 3 ) J + 

has been synthesized by Creutz and Taube.3 This ion is par
ticularly interesting theoretically because the two Ru atoms 
have identical coordination spheres but different oxidation 
states; one is Ru(II) and the other Ru(III). In the visible ab
sorption region the Creutz-Taube (C-T) complex shows the 
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